понедельник, 29 января 2018 г.

9 класс. Урок 56-57. Цепная ядерная реакция. Термоядерная реакция. Ядерный реактор. Атомная энергетика.

Ядерные силы являются самыми мощными силами в природе, но действуют только в пределах атомного ядра. Из этого следовало, что в ядре заключена энергия, которую впоследствии назвали энергией связи. Выяснилось, что суммарная масса всех нуклонов, из которых состоит ядро, больше массы самого ядра. Такую разницу назвали дефектом масс. Именно с этим связано понятие энергии связи. Оказалось, что часть массы нуклонов превращается в энергию связи в соответствии с уравнением Эйнштейна. Тогда ученые немедленно задались вопросом: а нельзя ли получить энергию при расщеплении ядра?
Ядерные реакции – это изменения атомных ядер при взаимодействии их с элементарными частицами или друг с другом. Ранее приводились примеры ядерных реакций, когда изучали открытие протона и нейтрона. Напомним, что для стимуляции этих реакций использовалась бомбардировка a-частицами. Надо сказать, что есть более эффективные методы для осуществления ядерных реакций: например, сообщать большую кинетическую энергию частицам с помощью ускорителей. В частности, вместо a-частицы можно использовать ускоренный протон. Во-первых, он будет обладать энергий примерно в 10 тысяч раз большей, чем a-частица, а во-вторых, на него будет действовать вдвое меньшая сила отталкивания со стороны ядра, поскольку заряда протона вдвое меньше, чем заряд a-частицы. Наконец, можно ускорять и другие частицы, имеющую массу, значительно превышающую массу a-частицы.







В 1932 году удалось провести такого рода реакцию: при бомбардировке ядра атома лития протонами возникало две a-частицы. Было установлено, что кинетическая энергия этих a-частиц на 7,3 МэВ превышала кинетическую энергию протона.
Дело в том, что удельная энергия связи в ядрах гелия больше, чем удельная энергия связи в ядре лития. Именно поэтому, часть энергии ядра лития превратилась в кинетическую энергию a-частиц. Из этого следует, что изменение кинетической энергии в процессе ядерной реакции равно изменению энергии покоя участвующих в реакции ядер и частиц. Разность энергий покоя ядер и частиц до и после реакции называется энергетическим выходом.
Рассмотрим еще один тип ядерных реакций – реакции на нейтронах. С помощью нейтронов гораздо удобнее осуществлять ядерные реакции, поскольку нейтроны не имеют заряда, а, следовательно, ядро их не отталкивает. Первым, кто начал изучать такие реакции, был Энрико Ферми. Например, при попадании нейтрона в ядро алюминия, из него выбивается a-частица и образуется ядро натрия.
Но самое главное, что обнаружил Ферми – это то, что нейтроны не обязательно должны быть быстрыми. Медленные нейтроны в определенных случаях оказались ещё более эффективными, поэтому нейтроны целесообразно замедлять до реакции. Под медленным нейтроном подразумевается нейтрон, скорость которого сравнима со скоростью теплового движения, поэтому такие нейтроны иногда называют тепловыми.
Впервые это явление было открыто Фрицем Штрассманом и Отто Ганом в 1938 году. Они обнаружили, что при бомбардировке урана нейтронами образуются такие элементы как барий и криптон. Правильно истолковать этот факт смогли Лиза Мейтнер и Отто Фриш, которые в 1939 году пришли к выводу, что ядра урана делятся. Происходит это следующим образом: в ядро урана попадает нейтрон, который дестабилизирует его. Энергия, которую добавляет нейтрон в ядро, приводит к неким пульсациям, то есть движению нуклонов.
В результате ядро деформируется и становится немного продолговатым. И тут возникает следующее: ядерные силы еще продолжают действовать, сжимая ядро, то есть, стараясь удержать нуклоны вместе. В то же время, в продолговатых концах ядра кулоновские силы начинают его еще больше растягивать. В результате, ядро разделяется на два осколка, каждый из которых содержит избыточное число нейтронов. Поэтому, каждый осколок испускает один или два нейтрона. Было вычислено, что при делении ядра урана выделяется энергия примерно равная 200 МэВ. Если подсчитать, какая энергия выделиться при делении ядер урана, содержащихся в одном моле вещества, то получим просто громадное число. Для выделения такого количества энергии, нужно сжечь десятки тонн такого топлива, как бензин или керосин, в то время как масса одного моля урана составляет менее 250 г.
Сразу следует заметить, что деление ядра урана вызвано нейтроном, но после деления ядра урана возникает минимум два нейтрона. Значит, эти нейтроны, могут вызвать деление уже двух ядер? А потом, четырех, восьми, шестнадцати и так далее. Такие реакции называются цепными реакциями. То есть, цепная реакция – это ядерная реакция, в которой частицы, вызывающие реакцию образуются как продукты этой реакции.
Известно, что сегодня активно развивается ядерная энергетика. Рассмотрим схему работы ядерного реактора. Ядерный реактор – это устройство, в котором осуществляется управляемая реакция деления ядер.
Часто в качестве ядерного горючего используется U-235, поскольку он наиболее эффективно захватывает медленные нейтроны. 
Основные выводы:
– Ядерные реакции – это изменения атомных ядер при взаимодействии их с элементарными частицами или друг с другом.

Цепная реакция – это ядерная реакция, в которой частицы, вызывающие реакцию образуются как продукты этой реакции.
– Для осуществления управляемой реакции деления ядер нужно специальное устройство. Такое устройство называется ядерным реактором.

Термоядерная реакция — это реакция синтеза легких ядер в более тяжелые ядра.
Для ее осуществления необходимо, чтобы исходные нуклоны или легкие ядра сблизились до расстояний, равных или меньших радиуса сферы действия ядерных сил притяжения (т.е. до расстояний порядка 10–15 м). Такому взаимному сближению ядер препятствуют кулоновские силы отталкивания, действующие между положительно заряженными ядрами. Для возникновения реакции синтеза необходимо нагреть вещество большой плотности до сверхвысоких температур (порядка сотен миллионов кельвин), чтобы кинетическая энергия теплового движения ядер оказалась достаточной для преодоления кулоновских сил отталкивания. При таких температурах вещество существует в виде плазмы. Поскольку синтез может происходить только при очень высоких температурах, то ядерные реакции синтеза и получили название термоядерных реакций (от греческого«Терма» — тепло, жар).
На примере урана ранее было показано, что при деление тяжелых ядер может выделяться энергия. В случае с легкими ядрами энергия может выделяться при обратном процессе — при их синтезе. Причем реакция синтеза легких ядер энергетически более выгодна, чем реакция деления тяжелых (если сравнивать выделившуюся энергию, приходящуюся на один нуклон).
Таким образом, в термоядерных реакциях выделяется огромная энергия. Например, в реакции синтеза дейтерия с образованием
 выделяется 3,2 МэВ. В реакции синтеза дейтерия с образованием трития выделяется порядка 4 МэВ, а в реакции синтеза дейтерия и трития выделяется около17,6 МэВ энергии.
Особенно большое практическое значение имеет тот факт, что при термоядерных реакциях на каждый нуклон выделяется значительно большая энергия, чем при цепных ядерных реакциях. Например, при синтезе ядер гелия из ядер водорода на один нуклон выделяется энергия, порядка 6 МэВ, в то время как при делении ядра U-235 на один нуклон выделяется энергия всего лишь порядка 0,9 МэВ.
Самоподдерживающиеся термоядерные реакции происходят в недрах звезд (в том числе Солнца) и играют важнейшую роль в существовании и развитии Вселенной.
На Земле первая термоядерная реакция была осуществлена при взрыве водородной бомбы. Высокую температуру, необходимую для начала термоядерной реакции, в водородной бомбе получали в результате взрыва входящей в ее состав атомной бомбы, играющей роль детонатора, а термоядерным горючим являлся дейтерид лития. Сначала в водородной бомбе взрывается атомная бомба. Этот взрыв сопровождается резким ростом температуры, а также возникновением потока нейтронов. Нейтроны вступают в реакцию с изотопом лития, образуют тритий, затем инициируется термоядерная реакция, которая дает основное выделение энергии.
Термоядерные реакции, происходящие при взрывах водородных бомб, являются неуправляемыми. Если бы в земных условиях была возможность осуществлять легко управляемые термоядерные реакции, человечества получило бы практически неисчерпаемый источник энергии, так как запасы водорода на Земле огромны. Однако на пути осуществления энергетически выгодных управляемых термоядерных реакций стоят большие технические трудности. Прежде всего, необходимо создавать температуры порядка 108 К. Только при такой температуре газ почти полностью ионизируется, превращаясь в плазму, в которой и происходит синтез ядер. Такие сверхвысокие температуры могут быть получены путем создания в плазме электрических разрядов большой мощности. Также, для удержания плазмы, необходимо создание очень сильных магнитных полей.
Этот метод используют в установках типа "Токамак", впервые созданных в Институте атомной энергии имени Курчатова.
В таких установках плазму создают в тороидальной камере, являющейся вторичной обмоткой мощного импульсного трансформатора. Его первичная обмотка подключена к батарее конденсаторов очень большой емкости, камеру заполняют дейтерием.
При разряде батареи конденсаторов через первичную обмотку в тороидальной камере возбуждается вихревое электрическое поле, вызывающее ионизацию дейтерия и появление в нем мощного импульса электрического тока, что приводит к сильному нагреванию газа и образованию высокотемпературной плазмы, в которой может возникнуть термоядерная реакция. Главная трудность заключается в том, чтобы удержать плазму внутри камеры в течение от 0,1 до 1 секунды без ее контакта со стенками камеры, поскольку не существует материалов, способных выдерживать столь высокие температуры. Эту трудность удается частично преодолеть с помощью тороидального магнитного поля, в котором находится камера. Под действием магнитных сил плазма скручивается в шнур и как бы "висит" на линиях индукции магнитного поля, не касаясь стенок камеры. Однако плазма в магнитном поле очень неустойчива и плазменный шнур распадается прежде, чем удается нагреть плазму до нужной температуры.
Использование установок типа "Токамак" (в которых для получения и нагревания плазмы используется мощный электрический разряд, а для удержания плазмы магнитное поле) является одним из возможных путей осуществления управляемых термоядерных реакций, другим путем достижения этой цели является лазерный термоядерный синтез. 
Термоядерные реакции играют важную роль в эволюции Вселенной, в частности в преобразованиях химических веществ в ней.
Благодаря термоядерным реакциям, протекающим в недрах Солнца, выделяется энергия, дающий жизнь обитателям Земли. Солнце излучает в пространство свет и тепло уже почти 4,6 миллиарда лет.


Предположение о том, что выделение энергии на Солнце происходит в результате протекания на нем термоядерных реакций, было высказано в 1939 г. американским физиком Хансом Бете. Именно за это Бете получил Нобелевскую премию в 1967 году.
Им же был предложен так называемый водородный цикл, т. е. цепочка из трех термоядерных реакций, приводящая к образованию гелия из водорода.

Чтобы получилось два ядра
 необходимые для третьей реакции, первые две должны произойти дважды.

Известно, что в соответствии с формулой
с уменьшением внутренней энергии тела уменьшается и его масса. Чтобы представить, какое колоссальное количество энергии теряет Солнце в результате превращения водорода в гелий, достаточно знать, что масса Солнца ежесекундно уменьшается на несколько миллионов тонн.
Но, несмотря на потери, запасов водорода на Солнце должно хватить еще на 5 — 6 миллиардов лет.

Основные выводы:

Термоядерная реакция — это реакция синтеза легких ядер в более тяжелые ядра.

Плазма — это частично или полностью ионизированный газ, образованный из нейтральных атомов и заряженных частиц.

Самоподдерживающиеся термоядерные реакции происходят в недрах звезд и играют важнейшую роль в существовании и развитии Вселенной.

– Если бы в земных условиях была возможность осуществлять легко управляемые термоядерные реакции, человечества получило бы практически неисчерпаемый источник энергии.

Комментариев нет:

Отправить комментарий